
CS152: Computer Systems Architecture
Operating System Support

Sang-Woo Jun

Winter 2021

Large amount of material adapted from MIT 6.004, “Computation Structures”,
Morgan Kaufmann “Computer Organization and Design: The Hardware/Software Interface: RISC-V Edition”,

and CS 152 Slides by Isaac Scherson

Computer architecture so far

CPU

Memory

lw s0, 0(t)
addi s1, s0, 1
…

What do we have to add to our processor to support a modern operating system?

Single program, communicates via MMIO

Computer architecture so far

❑ Single program, communicates via MMIO

❑ What do we have to add to support a modern operating system?
o Isolation between processes

o System abstraction – Hide details about underlying hardware

o Resource management – CPU, memory, disk, network, …

CPU

Memory

lw s0, 0(t)
addi s1, s0, 1
…

Aside: The old days

❑ Old personal operating systems (MS-DOS, CP/M, …) were very basic
o The division between OS and user software was not strong

o OS basically “jalr” into the user software, and “ret” out

o User software had all access to hardware, including OS files on disk

o Only one software running at a time!

o Software failure -> System crash!

❑ Not much hardware abstraction
o Each software had to handle each

possible video, sound, etc hardware

Aside: The CP/M operating system (1974)

❑ Control Program/Monitor, created by Digital Research, Inc.
o Designed for Intel 8080, with less than 64 KiB of memory

o Massive popularity, massive influence to MS-DOS (1981)
• A: B: C: device naming, “BIOS”, AAAAAAAA.EXT naming scheme, etc survives until now

❑ Extremely simple O/S
o Still used/modified by hobbyists!

Source: Digital Research, Inc.Source: http://benryves.com/projects/z80computer

Aside: The CP/M operating system (1974)

❑ Once booted, the CCP command line is presented.

❑ When executing software, binary is loaded to low part of free memory,
and OS simply jumps to that region
o Always only one execution context (process)

❑ User software interfaces with OS via BDOS
o BDOS location is stored as a pointer in

“Low storage”

o Scheme allows contiguous memory for software
regardless of memory capacity

❑ When done execution, simply returns to OS
Simple! Software has exclusive access to machine
OS is effectively just like a library – DOS was very similar

https://obsolescence.wixsite.com/obsolescence/cpm-internals

“Basic Disk Operating System”

Aside: Something new – multitasking

❑ Multiple tasks (processes) executing concurrently
o Multi-user systems, servers with multiple parallel workloads, services, GUI, …

❑ Memory usage becomes complicated with multitasking
o Two binaries cannot be loaded to same memory location, software can be loaded

to arbitrary, possibly non-contiguous, locations

o Will have contention between processes for data memory locations

o We cannot use absolute addressing any more for jumps and data referencing!

o No longer simple address model with assumed exclusive access to memory

Address “0x3c0” is encoded as literal.
Needs exclusive access guarantee
(At compile time?!)

Modern operating systems

❑ Modern operating systems support user process isolation

❑ The OS kernel provides a private address space to each process
o Each process thinks it has exclusive access to contiguous memory
o A process is not allowed to access the memory of other processes
o No user process can access OS memory

❑ The OS kernel schedules processes into the CPU
o Each process is given a fraction of CPU time
o A process cannot use more CPU time than allowed

❑ The OS kernel lets processes invoke system services (e.g., access files or
network sockets) via system calls

Familiar concepts from OS classes!

Architectural support for operating systems

❑ Operating system must have different capabilities from user processes
o Typical ISA defines two or more “privilege levels” (e.g., “user”, and “supervisor”)

o Some instructions and registers that are only accessible for a process executing in
supervisor mode

o Typically, the very first process to execute is given supervisor privilege, and is
responsible for spawning future user processes

❑ Interrupts and exceptions to transition from user to supervisor mode

❑ Virtual memory to provide private address spaces and abstract the
storage resources of the machine
o User processes executing LW/SW/etc access memory through a hardware virtual

memory manager

Topics

❑ Privilege levels

❑ Interrupts and exceptions

❑ Virtual memory

Privilege levels in modern architectures

❑ RISC-V has three (or more) formally defined levels
o Machine level, full access to all hardware after initial boot

o Hypervisor level – For virtualization. Not yet formally defined

o Supervisor level – For operating systems

o User level – For applications

❑ x86 has “protection rings”
o Typically only ring 0 and 3 are used

o Additional ring -1 for hypervisors

❑ Each process/thread belongs on one level

Less privileged levels have more restrictions
- Cannot access some registers
- Can only access memory via virtual memory, not raw hardware

Example: RISC-V

❑ Special register, “mstatus” (for “machine status”)
o Among other information, stores the privilege level of the current process

o Writing a new value to it can change the privilege level, but only machine mode is
allowed to write to it

o OS runs in machine mode, when user process must be spawned, it first spawns a
kernel process which downgrades itself to user mode before jumping to actual
user software

❑ Special ISA instructions to access the special registers
o One of many “Control Status Register”

o csrr, csrw instructions, only allowed in machine mode

o There are many CSRs! Will mention more soon.

x86 typically has separate instructions for each privileged operation

Topics

❑ Privilege levels

❑ Interrupts and exceptions

❑ Virtual memory

Exceptions?

❑ Event that needs to be processed by the OS kernel.
The event is usually unexpected or rare
o Exceptions cause an exception handler in OS, in higher privilege

Typical terminology

❑ Exceptions: Usually events caused by the running process itself
o Illegal memory access (SEGFAULT), divide-by-zero, system call, etc

❑ Interrupts: Usually events caused by the outside world
o Timer, I/O completion, keystroke, etc

❑ Terminology is often used interchangeably…

Handling exceptions

❑ When an exception happens, the processor:
o Stops the current process at instruction Ii, completing all the instructions up to Ii-1

o Saves the PC of instruction Ii and the reason for the exception in special
(privileged) registers

o Enables supervisor mode, disables interrupts, and transfers control to a pre-
specified exception handler PC

❑ After the exception handler finishes, the processor:
o Returns control to the user process at instruction Ii

o User process is oblivious to the interrupt

❑ If an interrupt is due to an illegal operation, the OS aborts the process
o e.g., SEGFAULT

Handling exceptions

❑ The operating system is responsible for telling the processor how to
handle each type of exception
o Typically via a table of pointers in main memory, each corresponding to a

particular exception type

o A special register is set with a pointer to the table in memory (“mtvec” for RISC-V,
“IDTR” for x86)

❑ For each exception, the CPU
transparently consults this register,
reads the table, and jumps to the
correct handler

“Machine Trap Vector”

“Interrupt Descriptor Table Register”

Exception use #1: CPU scheduling

❑ The OS kernel schedules processes into the CPU
o Each process is given a fraction of CPU time

o A process cannot use more CPU time than allowed

❑ Key enabling technology: Timer interrupts
o Kernel sets timer, which raises an interrupt after a specified time

Exception Use #2: Emulating Instructions

❑ mul x1, x2, x3 is an instruction in the RISC-V ‘M’ extension (x1 = x2 * x3)
o If ‘M’ is not implemented, this is an illegal instruction

❑ What happens if we run code for an RV32IM ISA on an RV32I machine?
o mul causes an illegal instruction exception

o The exception handler can take over and abort the process… but it can also
emulate the instruction!

Emulating Unsupported Instructions

❑ Program believes it is executing in a RV32IM processor, when it’s actually
running in a RV32I

❑ The IBM System/360 line of machines used this method to build cheap
machines that adhere to ISA

What are the downsides?
Slower performance compared to HW implementation!

Exception Use #3: System Calls

❑ User process has no access to raw hardware resources (not even the
keyboard)
o User process communicates with the OS via system calls (and other methods)

o The syscall instruction (SYSCALL in x86, ecall in RISC-V) results in a machine-mode
exception that can handle the request
• Arguments and return values following familiar function call conventions

o Aside: x86 used to assign a special number in the interrupt table (0x80) to handle
syscalls. This is still technically supported, but discouraged
• “int 0x80” vs. “syscall”

Exception details in RISC-V

❑ RISC-V provides several privileged registers, called control and status
registers (CSRs), e.g.,
o mepc: PC of instruction that caused exception
o mcause: cause of the exception (interrupt, illegal instr, etc.)
o mtvec: address of the exception handler
o mstatus: status bits (privilege mode, interrupts enabled, etc.)

❑ RISC-V also provides privileged instructions, e.g.,
o csrr and csrw to read/write CSRs
o mret to return from the exception handler to the process
o Trying to execute these instructions from user mode causes an exception.

normal processes cannot take over the system

System call details for RISC-V

❑ ecall instruction causes an exception, sets mcause CSR to a particular
value

❑ Application Binary Interface (ABI) convention defines how process and
kernel pass arguments and results
o Typically, similar conventions as a function call:

o System call number in a7

o Other arguments in a0-a6

o Results in a0-a1 (or in memory)

o All registers are preserved (treated as callee-saved)

Typical System Calls

❑ Accessing files (sys_open/close/read/write/…)

❑ Using network connections (sys_bind/listen/accept/…)

❑ Managing memory (sys_mmap/munmap/mprotect/…)

❑ Getting information about the system or process (sys_gettime/getpid/getuid/…)

❑ Waiting for a certain event (sys_wait/sleep/yield…)

❑ Creating and interrupting other processes (sys_fork/exec/kill/…)

❑ … and many more!

❑ Programs rarely invoke system calls directly. Instead, they are used by
library/language routines

❑ Some of these system calls may block the process!

Hello world using x86 system calls

❑ Old example using
using int 0x80

http://boccelliengineering.altervista.org/junk/asm/assembly1.html

So far…

❑ Operating System goals:
o Protection and privacy: Processes cannot access each other’s data

o Abstraction: OS hides details of underlying hardware
• e.g., processes open and access files instead of issuing raw commands to disk

o Resource management: OS controls how processes share hardware resources
(CPU, memory, disk, etc.)

❑ Key enabling technologies:
o User mode + supervisor mode w/ privileged instructions

o Exceptions to safely transition into supervisor mode

o Virtual memory to provide private address spaces and abstract the machine’s
storage resources (next lecture)

Context switching

❑ On a multitasked system, a processor cycles over multiple process,
executing them in small increments

❑ Simply jumping between where we left off does not ensure correctness!
o When we jumped into the kernel-space interrupt handler, the register values are

stored in the stack, so they can be reclaimed after exiting the interrupt handler
• Remember, all registers are callee-saved in this situation because user process is unaware

o If we start executing a different process, how do we reclaim the register values for
the other process? Stack

Process 1

Stack

Proc1’s register values

Kernel-space handler

Process 1

Timer
interrupt

Jump to
process 2

???

Context switching

❑ Context: The state of the process or thread which must be saved and
restored for seamless multiprocessing
o So far: PC, entirety of the register file (including the stack pointer, x2)

o In reality, a lot more information including virtual memory state

❑ Context switching: Storing the context of the current process and loading
the context of a new process
o The processor is (conceptually) oblivious to processes

• The concept of processes does not exist at the processor level, it’s just executing instructions

o Like loading the same body (processor) with a different soul (context)

Context switching – Process Control Block

❑ Context information is managed in the OS via a construct called the
Process Control Block (PCB)
o Again, the processor is completely unaware of this

o Stores information including the process ID, context state (register values, etc),
meta-information for scheduling control (when was it last scheduled? etc)

o An array of PCBs, one element per process/thread

o Operating system topic! Only introduced here to connect the dots between
architecture and OS

❑ In Linux, PCB is “struct task_struct”

Context switching – Process Control Block

❑ The OS software (not the processor hardware) is responsible for context
switching, including
o Storing the current context to the appropriate PCB

o Deciding which process to execute (and for how long)

o Loading the next context from the PCB to the hardware registers

o Resuming the next process
• “Resuming” because it is currently suspended while the current process was executing

Stack

Process 1

Stack

Proc1’s register values
Process 1

Timer
interrupt

Jump to
process 2

Process 2

Stack pointer

Proc2’s register values

Stack pointer

Stack

Process 1

Process 2
Stack pointer

Proc1’s register values

Aside:
Hardware vs. software context switching

❑ Some processor designs support hardware handling of context switching
operations (e.g., x86)
o CALL or JMP under special circumstances evoke hardware handling of context

switching

o Processor hardware automatically read/writes the PCB if it is in a specific format

❑ Unfortunately, most mainstream OSs don’t use it
o High overhead as some of the hardware-defined context includes some values

that are no longer useful in modern OSs
• e.g., segment registers, will introduce soon

o Some newer registers are not automatically restored
• e.g, floating point

Modern processors often omit this feature in 64-bit mode

Aside: x86 way of creating user-level
processes

❑ x86 doesn’t provide a way to explicitly switch to user level
o Instead, we write code that pretends to return from an interrupt, back into user

level

o Allocate stack space in memory, and populate it with a return address, stack
pointer, thread information, … pretending to be a user level process whose
interrupt has been handled

o Call “IRET” which reads the stack, and “returns” to user level operation

System boot process

❑ Our RV32I processor, when powered on, starts executing from address 0
o When powered on, memory is blank… How does OS get there?

o Short answer: Firmware (e.g., BIOS, UEFI)

❑ Firmware is usually located in address 0
o Special ROM/EEPROM/etc hardwired to map to address zero

o On power on, CPU executes the firmware to load a small “bootloader” from
storage and loads it to a special address, and transfers control

o Bootloader loads the actual OS kernel from storage to memory and transfers
control

CPU
ROM

RAM

Kernel

Firmwareaddr 0

Why bootloader?

❑ BIOS (Basic Input/Output System) treated the first sector (512 Bytes) of a
storage medium specially (MBR, “Master Boot Record”)
o BIOS loaded the MBR of the first HDD to memory and executed it

o Bootloader had to fit in 512 Bytes, and is responsible for finding/loading the OS
kernel and executing it

o Due to complexities of file systems, etc, sometimes two-level bootloaders were
used (e.g., Linux)
• Bootloader loads the second bootloader and executes it, which in turn loads the whole kernel

❑ UEFI (Unified Extensible Firmware Interface) doesn’t use MBR, instead
stores bootloaders in a special UEFI partition
o Still not the whole kernel!

